
CONTIMUOUS FLOW ELEtXROPHORESK3. THE CRESCENT PHENOMEl+tA 
REVISITW 

I. ISQTHERMAL EFFECTS 

Asymptotic soiutions are derived for the partial differential equations (PDEs) 
governing solute behavior in the continuous flow electrophoresis device under iso- 
thermal operating conditions. In the limit, D = 0, analytical solutions are derived 
for the sohlte crescent shape and the concentration profile. In the limit, ((d&)P%)yf >>l, 
axr approxima+& solution to the PDE is found. These solutions are then used to predict 
the net dispersion of the concentration profile as a function of the fluid velocity in 
the chamber, the electrophoretic velocity of the solute and the electroosmotic flow 
at the chamber walls. The effects of difiusion on the net dispersion of the solute is 
also discussed for *&se limiting cases. 

INTRODUCTiON 

In the current generation of continuous flow electrophoresis (CFE) devices a 
curtain of fluid is passed between two plates. An electric field is then established 
perpendicular to the direction of fiuid motion and parallel to the plates. This allows 
a steady inlet stream of solute, introduced into the fluid curtain, to be fractionated 
according to its component electrophoretic mobilities. III this manner the inlet sohrte 
stream is continuously split into primary components and each component is collected 
separately at the outlet of the device. 

Theoretical analysis of the concentration profiles in the CFE device has 
advanced in two main themes. The first of these, used by Strickler and Sachsl, con- 
siders the nondif%sive iimit of solute transport. The authors used their analysis to 
demonstrate the transport of soIute in the ekctric field and, in particular, to ehxidate 
the effects of ekctroosmotic flow at the chamber walls. Their work was qualitative 
in nature since it considered only the dispIacement of the solute stream and not the 
concentration profiIe of the exit stream. Their basic ideas have since been extended to 
predict solute concentration pro&s using numerical procedure$.3. 

The second theme includes the effects of difh,ion on the concentr&ion 
proBe4. This model is based on the usual equation of convection with dithzsion and 
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iacbxies ekctrophcretic migration orthogonal to the axis of convection, AIthough in 
principkz this linear difkrential equation has an analytical sobstioa, the fo m of the 
sotntion is wxy compkzted. Reis e? aL4 propose an approximate so&ion based 011 
thC aslaiysis of Giin and sankarasubm -an5 which considers the effscts ofd.iEtiorm 
along the three axes but ignores the efkcts of electroosmosis on the s0M.e con=- 
tr2lion proHe_ 

while it is important to consider the effi of di&sion in the CFE analysis, 
the n2agnitude of the difkive effkct as coinp2red with the ekctroosmotic e&ct is 
usuazly very small under normal operating conditions. In this paper two methods of 
calculating the concentration proties in the CFE are descrikxl. The Grst is a~ 
analytical method for cakulatig the concentration pro&s in the noad.i&sive knit. 
The phenomenon of CXSCXM formation is discussed in some detail along with general 
reslrits from the anaIyticai analysis. The second snetbod is an approtiate solution 
to +Ae convection-dif&ion equation which includes the eE&ts of osmotic migration. 
This scIution is axqaed with the solution of Reis ef aL4 in the limit as eIeetro_ 
osmosis becolnes unimportant and to l Je vralytical solution in the limit a-s di&sion 
becomes lin.ikpomt. 

TEEORETICAL 

IQ the absence of difkion solute. particles are assmed to follow the fiuid and 
electrokinetic motions in their two respective axes, For the purposes of this study the 
lefi handed coordinate system of SaviHe and Ostrzchs is used (see Fig- I)- The fluid 
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i?owisinthepasitivexdirectiunwith maximnnr vefo& V,. The electrophoretic 
vehxity is in the positive 2 direction as is the electmosmotic flow. Then the forxmdas 
for the vek&ks in the x and z directions are 

V x=&&U -u”/d? (11 

v, =r; {Vi-3/2V,(1 -u’/d*)i- U) (2) 

where V, is the inaximm v&city in the x direction, V, is the ektroosmotic waJ.l 
velocity and hi is the solute ekctrophotetic velocity. Since the particles do not deviate 
from their characteristic Btid stseam lines, the displacement of any particle along the 
z axis is defxmnimd by its net electrokinetic vekxity rnuttipkzd by the solute boldup 
time, 

‘4 = W-i- Vi - 3 VE (I- u’/d*ll- WV, (I- r’/W (3) 

If a band tif solute having thickness, 28, and width, y, is c~z&inuously f& into 
the CFE at x = 0, then, as the soIute is displaced along the z axis the foxward and 
rearward points of the band its&deform in the velocity field- The solute band may 
take on three distinct shapes depending on the condition of operation of the CFE. 

-t- 

4 I 

a-o 
Fa_ 2. Ddi&ioaal skcfch for the sample inlet of the CFE device. 

(1) If V, = --U then the profite always appears as in Fig. 2 except that the 
band is dispked by A = 3/2 UL/V,_ 

ffie cresent is “blunt” aE;d the tail region has a constant cmmmration proHe (see 
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tke crescent is “developed* (sez Fig. 4) 

The camcent formation is a nahxal artifact of baud deformation due to the 
o_tiogoaal ffows in the CEE If the solute has formed a crescentasviewedintke 
;r-z plaue, then an aualysis of tke solute concentration (averaged over y) must ke 
split into tkree parts. These parts are kerein termed tke cresce&ke&tailaudt.raiL 
This is neaxsary &cause, wken tke solute input is rectangular in shape, i&gration 
&cross the y domain, y&(-1,2), is performed dXerentIy in eack of tke three regions. 
In tke bead, which occupies tke region, 

integration is performed from tke centerline to tke outer paraboh In tke tail, which 
occupies the intermediate area between tke head and the trail, integration is performed. 
from tke inner parabola to tke outer parabola. And, in tke trail, wkick occupies tke 
RSgiOIl, _ _ -. 

in*x_mticn must be performed from tke inner parabola to 6, tke outer bouudary of 
tke solute inlet. 

The boundaries of the inner aud outer parabolas are determined from tke 
formulas for tke displacemezxt, d. Solving equ. 3 for y yields 

=I= 

(4) 

wkre tke negative root is discarded. The parabola with its origh at A--y is given 
by the equation 

c Aiy 
I + (TivE - Wv,S” 



Having dettzsuined the shape zmd the boundary of the solute proftle, it is now 
possible to C.&Z&& the co~~centratioa of the soWe in the &xid phase. There are two 
defktitions of the concentration that have s$&kance for the CFE. One is the con- 
ctxttration in the plane of viewing; that is, looking along the y axis into the x-2 plane 
ofthe CFE as one might do with a photo-mm&g device (see KmmimS). The other 
is the sol&e flux tlxongb the plane of cx&cti~n. This is the comzen~tion which 
would be collected at each point along tie z axis at the outlet of the CFE. 

The conmtition in the plane of viewing is defined as 

cf.& 2) = t,.P C(L ys 2) dy/acd dy (6) 

The concentration in the plane of colfection is de6ned as 

e(& 4 = ,p N,(G Y, 4 dyW K dy (7) 

here 

The analytical solutions are useful in predicting solute behavior in the CFE 
without recourse to numerical methods. These solutions are limited because they 
only represent one geometry for the so!ute input, but they are still worth using as a 
first approach to column design and, as will be seen later in this paper, as an example 
of the Iimiting behavior in the CFE as diffusion becomes negligiib. 

For the case given above where the cresent is developed and the tail proceeds 
the head in the p&&e disection (i.e., 

(I) In ffie head region, 
V, > -U), these concentrations are 



(3) -And in the kzil region, 

- 

The eflects of di@sion in the CFE 
When difksion of solute is included in the analysis of the concentration pro- 

files in the CFJZ, the system is then described by the usual equation of diffusion wiffi 
‘convection and tkctrophoretic migmtioa_ The general form of this differential 
equation is 

with the bounda-q conditions that 

Y - =-Ld 

2=+X3 - 
x-0 
X=00 

dC/6y = 0 
c=o 
c = cq(z) 
Cisfinite 

Using the dimensionless parameters 

(15) 

(16) 

x* = x/d 
Y * = y/d 
z+ = z/d 

Pe(y*) = UP) dlD 
EQ*) = [U-j- V,(y*)] d/D 
Cf = C/z, 



which then-gives the dimensidess form of the equation 
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with boundary CQQditiOQs that 

y* = -&LO &?/43y* = 0 
z*=&-03 eb=Q (W 
;s+=o CT* = B(y*) 
x*=-f-CO tYiStittZ 

IQ order to simpli@ the mathematics of this problem it is desired to eliminate 
tie term desaibing diftksion along the y axis. The explanation for doing this is 
intuitive in nature and is given inunediateIy below where Ay is the mean di@usio& 
displacement along the y axis- 

Whew this critetion is met, difkional spreading along they axis of the chamber 
is very small compared to the thickness, d, of the chamber. Dispersional spreading 
along the Z* axis due to the movement of solute from the center of the chamber 
becomes small compared to the dispersion due to convective influences, although it 
probably remains slightly more important than Wksion along the other two axes. 
The net result of this assumption is that the concentration in the vicinity of the peak 
is slightly overestimated with the leading edge of the curve somewhat overextended, 
the tail behind the peak is underestimated and the farthest edge of the tail is over- 
estimated since the soiute would die toward the center of the chamber as well as 
aiong the x and z axes and, sampling the higher velocities, it would leave the chamber 
sooner. Thus, concentration profiles generated from this approximate solution give 
a conservative overestimate of the diiive efkt on dispersion in the CFE. 

It is instructive to point out that in the limit of no di&sion we have Aready 
seen that the solute concentration profile peak exits the CFE chamber at z = (P%/EJ,)x. 
In the limit as diffusion dominates ammtive trampopt the solute is able to frequently 
sample alI positions on they axis and so the peak wiIl exit the column at z r $(Pe&l& 
since each particle travels through the chamber at the average fluid velocity_ This 
means that as operating conditions go from low dif&sion to high diffusion effects 
there is a shift of 50% in the displacement of the peak from the origin. This will be 
important later in discussing the results of Reis. 

The equation to be solved then is 

Using the transform 

C*(*a*tz*) = f(x*y+,z*) exp @$y*)x* f El(3+)2*)/2 

reduces the dS&ential cquatiorr to 
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This equation automatically satidks the boundary conditions on y*- The conditions 
onx=andz=are 

X==&lXJ f=O 
z*=o f = b(yI) (23) 
zf=w f=O 

Because the domain of x is semi-infinite the fourier sine transform may be 
uss where 

F=(f) = (;)U2 j= f(x) sin (sx) dx (24) 

and the fourier exponential transform is used in z. 

F,(f) = _ ate f(y) exp f (kzy) dy 

fti) = & j+” F&3exp - (iay) do 
-0 

(Xl 

(27) 

which yields the double transform 

FAFe(f)) =sl(tit?+i (28) 

where 9 = (PeYy*) f ElYy*))/4 and KI (z) is a modified Bessel function of the second 
‘kind of order one. 

The solution for the concentration proBe in the CFE is then 

Cakulations of the concentration in the plane of viewing and concentration 
through the plane of colkction are =“enerated from formulas 6 and 7, mspectively. 
The integrzttiozs are done numericahy and the results are presented in the next section_ 

The solution generated in this manner is approximate and so it is helpful to 
compare it with other extant solutions_ For this purpose the functions generated by 
Re& er al.’ are shown here as well as the aualytic solutions generati earlier in this 
papr_ The resuks of Reis et al_ are for the special case when the CFJ3 chamber walk 
do not generate an osmotic flow_ The form of that solution gives the concentration 
in the plane of cokction_ lkcause both of these approximate solutions use a Dirac 
function for the solute input they cannot be directly compared to the analytical solu- 
tion in tbe non+liEusive limit_ For this reason the input width, and concentration of 
the ;~~alytical solution are modi&d so that the height and width of the output oor- 
&mspond roughly to the ditfusive spreading if there were no electric fieM_ 
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In Fig. 5 a colllparison is made of the solution of Reis ef ak4 anci the soWion 
given in this papeP at Pizclet numbem of20 and IQ8 when there is no imposed ekcti-ic 
Geld. Agreemcd between &es results is good although the Reis solution is cm- 
sistently higher over the z axis. This may be due to the fact that Reis’ solution, as is 

ELECTRlt FIELD 

stated in his paper, is not nomalLzed whereas the solution generated in this paper is 
nornxibxd. Figs. 6 and 7 are a comparison, at P&et numbers of 20 and 100, of the 
two sohtions when an ekctrophoretic velocity is included in the solution. In Fig. 6 
it is immediately apparent that the peak locations differ between the two so!utions. 
Fig. 7 demonstrates that an increase in the Peclet number has opposite efkcts on 
these two solutions- Reis’ solution predicts that increasing the PecIet number leads to 
increased dispersion white this work shows a decrease in dispersion_ 

This peculiar behavior of Reis’ solution was predicted iu his papee and, in 
fact, further calculations show that his solution actualIy goes through a minimum in 
dispersion for 0 < P+ < 104) when L = 10. No explanation for this behavior is 
offered in his paper and none is given here (Fig. 8). 

Figs. 9 and 10 are a comparison of Reis’ solution, the soWion from this paper 
and the analytic& solution in the limit of zero cli&sio~ for Pe = 20,100 and L = 100. 
The last two solutions show very good agreement in the position of their peaks aud 
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Fig_ 6. A comparison of Ek% solution with the solution de&cd in this paper at a Ekckt number of 
20 witi1 110 Motic flow. -, Rcs solution; - - -* this work. U/V, = 0.6; L/d = 10.0; 
pet = m-0; V&V, = o-o_ 

in their respective trailing dispersions. The third solution is displaced from the first 
two by nearly 50% and otherwise has no resemblence to the analy3ical result. 

It is apparent from the graphical work presented here that Reis’ soIution 
da&s s?5JstantiaIIy from the solutiosls presen +%zd in this paper. Reis’ solution &JS 

not reduce to the analytic sohxtioc in the limit as (Fe,,d/Lp + (~3 as do the other 
solutions. There are two importact points which suggest a reason why this happens. 

In the first place, the dutioa peak arrives at a position on the z axis associati 
with the avenge fluid velocity rather than the maximum fiuid velocity. In ‘the limit as 
(p%dl’L)* is large the Mter wodd be .~ue while for small (Fe,,djL)+ the former would 
be expected- 

Secondly, Reis ef (II. assert that the parameter 

has a vaine that is never very d.ifGerent from 1 _O_ This would be expected at iow values 
of fpe,d/E.)* since the solute would manage to frequently sample all positions on the 
y axis, bat as may be seen from the zero diEtion ES&S 
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Fii 7_ A comparison of Reis solution with the sohtio~ derived in this paper when the P&t number 
is 106 aed thece is no ekctmwmotic ff ow. -, Reis’ salufion; - - -* this work WV, = O-6; Lid = 
10.0; Fe0 = 100.0; vrgv= = 0.0. 

S 
MP PARALLEL To TfIEELEcTRIc F.zLD 

Fii. 8. The etkct of ttIe l?ixset nutilbor on the rilkpaion oftbe solute using Reis’ soIution. u/v, = 
0.6: L[d = 10.0; V&/V, = 0.0. 



Fg.9.A cmqmison of Rek’ soIutkm with the sohtimxs ckriveyl In this papei when the non- 
dhmtsioxtal column Icngt is 100 and the P&et numkr is 20. -*-, Anatytical sohtian; ---, 
RcS soiution; -. -&is work. U/V, = 0.6; L!d = tOO.0; l?q = 20.0; VJV, = 0.0. 

c 

Fe. 10. A axqrzzxisa~ of R&’ solution tith the sclutious derived in this paper when the uon- 
dimasional cohmn length is 1W and the l?ecIet nLrmber is lco. -*-, Au&t&al s&&ion; - - -, 
Rds’ zs.@him; ) this work U/V, = O-6: L/d = 100; pe0 = 100.0; V&‘y = 0.0. 



Fig. 11 shows the effect of inrreasin g the PefAeE number an the dispersion of 
the concentratio~1 pro&ie. Fran this 6gme it is apparent that there is 110 minimum in 
the &spersioE of the sol&e with irtcreaskg Pedet nmber_ Also, a very slight shit3 
is noticeable in the position of concentration peak 
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The profiles shown in Fig. 12 indude the eEkt of an osmotic wall velocity. 
They de&y show the beneficial eEkcts of operating the CFE such *ftat U = - V,. 
Finally, Fig. 9 is a graph of the cxescen& formed by the profile in Fig. 13. It is the 
txescent form&m phenomena which cuntibute the majority of tie dispersion to the 
solute wncentr&ion pro@e. Notice that tihen U = -V, the crescent shape is not 
formed but diffusive in&mxes cause the solute to assume an hourgkss coti~tion. 

The resulti of the latter part of this paper nest be inteqrexed canzfufy and 
only in the light of the tt.ssumptions used in the solution of the problem. Tk heuris& 



appiimion of matfrematic approximations for simpBici3tion’s sake can ody be 
~$Mi&xi, isi this case= by the a- of these resulti when they are Srudied in their 
z?qmptitic Emit, @z&/L)* -+ 03. From these resdts we are aHe then to extract some 
nseful infomatiosl. 
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Ie the &st pke these equations predict 8 phenomenon as yet unde*kcted in 
c&rating devices. This is the formation of an hourglass configuratior~ of s~iute in the 
chamber slit. Again it is inzportant that the remits here only slightly oven5stimate the 
diEus& e&f2 and so this phenomenon is not just an miEict of the caIcuWion_ 

Secondly, the results point out the shmtmmksgs of the e&ier work dose by 
Reis et al. While it may be that the error in theii analysis is due simply t0 tzunation 
of their analysis, the solution presented in their paper is clearly inapplicable to CFE 
operation at high values of (&d/.)*. In this l&it the approximate solution presented 
here agrees very well with the analytical soh~tions presented in the first part of the 
paper. Th= solutions adequately describe the synergetic effects of the parabolic fluid 
and osmotic velocities OIZ the dispersion of s&te in the CFE cfiizHkr. 
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