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SUMMARY

Asymptotic solutions are derived for the partial differential equations (PDEs)
governing solute bebhavior in the continuous flow elecirophoresis device under iso-
thermal operating conditions. In the limit, D = 0, analytical solutions are derived
for the solute crescent shape and the concentration profile. In the limit, ((d/L)Pe)V> > 1,
an approximate solution to the PDE is found. These solutions are then used to predict
the net dispersion of the concentration profile as a function of the fiuid velocity in
the chamber, the electrophoretic velocity of the solute and the eleciroosmotic flow
at the chamber walls. The effects of diffusion on the net dispersion of the solute is
also discussed for these limiting cases.

INTRODUCTION

In the current generation of continuous flow electrophoresis (CFE) devices a
curtain of fluid is passed between two plates. An electric field is then established
perpendicular to the direction of fiuid motion and parallel to the plates. This allows
a steady inlet stream of solute, introduced into the fluid curtain, to be fractionated
according to its component electrophoretic mobilities. In this manner the inlet solute
stream is continuously split into primary components and each component is collecied
separately at the outlet of the device.

Theoretical analysis of the concentration profiles in the CFE device has
advanced in two main themes. The first of these, used by Strickler and Sachs!, con-
siders the non-diffusive limit of solute transport. The authors used their analysis to
demonstrate the transport of solute in the electric field and, in particular, to elucidate
the effects of electroosmotic flow at the chamber walls. Their work was qualitative
in nature since it considered only the displacement of the solute stream and not the
concentration profile of the exit stream. Their basic ideas have since been extended to
predict solute concentration profiles using numerical procedures®3.

The second theme includes the effects of diffusion on the concentration
profile’. This model is based on the usual equation of convection with diffusion and
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includes eleciropheretic migration orthogonal to the axis of convection. Although in
principle this linear differential equation has an amalytical solution, the fo m of the
solution is very complicated. Reis et al.* propese an approximate solution based on
the analysis of Gill and Sankarasubramanian® which considers the effects of diffusion
along the three axes but ignores the effects of electroosmosis on the solute concen-
tration profile.

While it is important to consider the effects of diffusion in the CFE analysis,
the magnitude of the diffusive effect as compared with the electroosmotic effect is
usually very small under normal operating conditions. In this paper two methods of
calculating the concentration profiles in the CFE are described. The first is an
analytical method for calculating the concentration profiles in the non-diffusive limit.
The phenomenon of crescent formation is discussed in some detail along with general
results from the analytical analysis. The second method is an approximate solution
to the convection-diffusion equation which includes the effects of osmotic migration.
This sclution is compared with the solution of Reis er al.® in the limit as electro-
osmosis becoines unimportant and to the apalyticzal solution in the limit 2s diffusion

becomes unimportant.
THEORETICAL

Convective dispersion in the CFE
In the absence of diffusion solute particles are assumed to follow the fluid and

electrokinetic motions in their two respective axes. For the purposes of this study the
left handed coordinate system of Saville and Ostrach® is used (see Fig. 1). The flaid
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Fig. 1. Definitionat sketch for the CFE device.
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flow is in the positive x direction with maximum velocity V. The electrophoretic
velocity is in the positive z direction as is the clectroosmotic flow. Then the formulas
for the velocities in the x and z directicns are

Ve =i V(1 — &) m

Ve=1i {Veg—32Ve (1 —¥*/d>) + U} @
where Vi, is the maximum velocity in the x direction, F% is the electroosmotic wall
velocity and U is the solute electrophoretic velocity. Since the particles do not deviate
from their characteristic fluid stream lines, the displacement of any particle along the
z axis is determined by its net electrokinetic velocity multiplied by the solute holdup
time,

4=[U+Ve—3Ve( —3yd)] LV (1 — y*d)] &)

If 2 band of solute having thickness, 23, and width, y, is continuously fed into
the CFE at x = 0, then, as the solute is displaced along the z axis the forward and
rearward points of the band itself deforms in the velocity field. The solute band may
take on three distinct shapes depending on the coanditions of operation of the CFE.
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Fig. 2. Definitional sketch for the sample inlet of the CFE device.

(1) If ¥z = — U then the profile always appears as in Fig. 2 except that the
band is displaced by 4 = 3/2 UL[Vy..

U + Vp) (6/d)?
[1 — (8/d)’]
the cresent is “blunt™ acd the tail region has a constant concentration profile (see
Fig. 3).

Q) f Ve £ — Uand V;f" > then

Vur _ | (U+ Va) (/A |
L I a=—@oy |5

(3) Vg #— Uand

Fig. 3. Sketch of the “blunt™ crescent showing the head, tail and trail regions.
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the crescent is “developed” (see Fig. 4.

Fig. 4. Sketch of the developed crescent showing the head, tail and trail regions.

The crescent formation is a natural artifact of band deformation due to the
orthogonal flows in the CFE. If the solute has formed a crescent as viewed in the
7z plane, then an analysis of the solute concentration (averaged over y) must be
split into three parts. These parts are Lerein termed the crescent head, tail and trail.
‘This is necessary because, when the solute input is rectangular in shape, integration
across the y domain, ye(—1,1), is performed differently in each of the three regions.
In the head, which occupies the region,

(U+VEL—/%L),

mtegration is performed from the centerline to the outer parabola. In the tail, which
cccupies the intermediate area between the head and the trail, integration is performed .
from the inner parabola to the outer parabola. And, in the trail, which occupx&s the
region, .

z ([ V,,Z = Zﬁldz) —32ve] £

— " [ Vu( — 873D 3/_.2V5]'L)’ T
integraticn must be performed from the inner parabola to 8, the outer boundary of

the solute inlet.
The boundaries of the inner and outer parabolas are determined from the

formulas for the displacement, A. Solving egn. 3 for y yields
4 |, Vg — U2

. ' Vi )
. - 4
Y= .4 1. ___%VE @
L' Vi

where the negative root is discarded. The parabola with its origin at A —y is given
by the equation

A []
-+ GV — U
y=+ )
_A_Z;l 1 3Ve/Vi

1/2
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Having determined the shape and the boundary of the solute profile, it is now
possible to calculate the concentration of the solute in the fluid phase. There are two
definitions of the concentration that have significance for the CFE. One is the con-
centration in the plane of viewing; that is, looking along the y axis into the x—z plane
of the CFE as one might do with a photo-scanning device (see Krumrine?). The other
is the solute flux through the plane of collection. This is the concentration which
would be collected at each point along the z axis at the outlet of the CFE.

The concentration in the plane of viewing is defined as

C(L, 2) = of* C(L, y, 2) dy[of® dy ®)
The concentration in the plane of collection is defined as
C(Ls z) = Qfd NAL, y, 2’) d)’/ofd Ve dy . (7)
here
6C
Nx(Ls ¥ 2) = V:C(L’ ¥s ") D —— (L ¥s Z) ) (8)

The analytical solutions are useful in predicting solute behavior in the CFE
without recourse to numerical methods. These solutions are limited because they
only represent one geometry for the solute input, but they are still worth using as a
first approach to column design and, as will be seen later in this paper, as an example
of the limiting behavior in the CFE as diffusion becomes negligible.

For the case given above where the cresent is developed and the tail proceeds
the head in the positive direction (i.e., Pz > —U), these concentrations are

(1) In the head region,

ze(U+ Vor 23 Yer)
V . k"
P {(A +7)‘Tu+‘i‘Vs_U 12
G- Vae ‘ ©)
“ +J’)—E-+§VE
- yi/2
A+ U R T2V5+£
_(2_— L 2 (10)
_ ] > |
“ | dirnte i A+nle 1 sr,
(2) In the tail region
A /2 VM 132
c G ) M WU A__;.%VE_U
£ _ an

(A+y)L—“+§Vs A7 4 3v,
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L9 U4+ ?)__ + 3Ve 4+9 ____Lu + 3Ve
VH! vz
TT‘EVE—U A ‘LZVE_{_%U
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v
(3) And in the treil region,
el UxVe 3\, [ U+Ve 3,3\,
& 3 s 2
kVu(I—‘_—) Vie (1 — )
e s pEEsw—v)l
£-2- L as)
Vas vz
TANTANE I e s I g M
— a3 2
c, 34 d A__Yii_:_;ys A——Lﬂ-—{—%l’s
- (14)

Tke effects of diffusion in the CFE

When diffusion of solute is included in the analysis of the concentration pro-
files in the CFE, the system is then described by the usual equation of diffusion with
‘convection and eclectrophoretic migration. The general form of this differential
equation is

5C . , € _p(¥C  FC | &C
Vi) 5+ U+ V0N 5 =D(3z + 5= + 37) as
with the boundary conditions that
y==d 8Cjéy =0
z=+oc CcC=0
x=o0 Cis finite

Using the dimensionless parameters

x* = x[d Pe(y*) = V.(3%*)d/D
ye=y/d El(y*) = [U -+ V.(y®)]4/D
z*=z/d C* = C[G
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which then gives the dimensionless form of the equation

8§C* 8C* &§C* 82C* FC*
Pe0) g TEO) G =5 + 5 T 5= an
with boundary conditions that
y* =110 3C*[sy* =0
z* =4 oo C*=0 as)
x*=0 C* = 3(p%)
x* = 4 oo C* is finite

Ie order to simplify the mathematics of this problem it is desired to eliminate
the term describing diffusion along the y axis. The explanation for doing this is
intuitive in nature and is given immediately below where Ay is the mean diffusional
displacement along the y axis.

2, @D (@) \*
e _(Pe(y*)) <10 19)

‘When this criterion is met, diffusional spreading along the y axis of the chamber
is very smail compared to the thickness, d, of the chamber. Dispersional spreading
along the z* axis due to the movement of solute from the center of the chamber
becomes small compared to the dispersion due to convective influences, although it
probably remains slightly more important than diffusion along the other two axes.
The net result of this assumption is that the concentration in the vicinity of the peak
is slightly overestimated with the leading edge of the curve somewhat overextended,
the tail behind the peak is underestimated and the farthest edge of the tail is over-
estimated since the soiute would diffuse toward the center of the chamber as well as
along the x and z axes and, sampling the higher velocities, it would leave the chamber
sooner. Thus, concentration profiles generated from this approximate solution give
a conservative overestimate of the diffusive effect on dispersion in the CFE.

It is instructive to point out that in the limit of no diffusion we have already
seen that the solute concentration profile peak exits the CFE chamber at z = (Pe,/Elg)x.
In the limit as diffusion dominates convective transport the solute is able to frequently
sample all positions on the y axis and so the peak will exit the column at z = 3(Pey/Ely)x
since each particle travels through the chamber at the average fluid velocity. This
means that as operating conditions go from low diffusion to high diffusion effects
there is a shift of 509 in the displacement of the peak from the origin. This will be
important later in discussing the results of Reis.

The equation to be solved then is

&C* &C* éCc* hd

3t T g — B0 5w + EIOY) ?S_f*-' @0)
Using the transform

C¥(x*,y®,2*%) = (x*,y*,z%) exp (Pe(y*)x* 4 El(3*)z*)/2 @n

reduces the differential equation to
&f | FF [E’e’(y*) + ER(y*) £
8z%% ' gx*t 4 ]

22)
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This equation automatically satisfies the boundary conditions on y*. The conditions
on x* and z* are

x*=<4 oo f=0
z2¥=0 f=4a09% 3)
z®¢ = oo f=0

Because the domazin of x is semi-infinite the fourier sine transform may be
used where

£O=(2)" [ f)sin0ax @9

0 =(2)" [ F®sinEads @s)
and the fourier exponential transform is used in z.

E) = _oJ*® fO) exp + (fay) dy (29)

V=5 [ FDew — o) de @
which yields the double transform

E.Fe(D) = s/(e* + 5° + ) @5

where 2 = Pe2(y*) + EF(y*))/4 and K, (2) is a modified Bessel function of the second
xind of order one.
The solution for the concentration profile in the CFE is then

_ (2::)—1.’2 ?)’-#
(x:z + th)UZ

+ Elz%)
2

C*(x%, y*. 2% Kuly(e*? + 297) exp( £

29

Calcalations of the concentration in the plane of viewing and concentration
through the plane of collection are generated from formulas 6 and 7. respectively.
The inicgrations are done numerically and the results are presented ip the next saction.

RESULTS

The solution generated in this manner is approximate and so it is kelpful to
compare it with other extant solutions. For this purpose the functions generated by
Reis et al* are shown here as well as the analytic solutions generated carlier in this
paper. The results of Reis ef al. are for the special case when the CFE chamber walls
do not generate an osmotic flow. The form of that solution gives the concentration
in the plane of collection. Because both of these approximate solutions use a2 Dirac
function for the soluie input they cannot be directly compared to the analytical solu-
tion in the non-diffusive limit. For this rezson the input width, and concentration of
the analytical solution are modified so that the height and width of the output cor-
respond roughly to the diffusive spreading if there were no electric fiald.
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In Fig. 5 2 comparison is made of the solution of Reis ef al.* and the solution
given in this paper at Peclet numbers of 20 and 100 when there is no imposed electric
field. Agreement between these results is good although the Reis solution is con-
sistently higher over the z axis. This may be due to the fact that Reis’ solution, as is

oS

o4

NORMAL FLUX IN THE PLANE OF COLLECTION

0.1

s AXIS PARALLEL TO ELECTRIC FIELD
Fig. 5. A comparison of Reis® solution to the solutions derived in this paper when there is no applied
clectric field. —e—, Analytical solution (D = 0); ~—, Reis’ solution; — — —, this work. Lfd = 10.0;
UV = 0.0; Ve[V =00.

stated in his paper, is not normalized whereas the solution generated in this paper is
normalized. Figs. 6 and 7 are a comparison, at Peclet numbers of 20 and 109, of the
two solations when an clectrophoretic velocity is included in the solution. In Fig. 6
it is immediately apparent that the peak locations differ between the two solutions.
Fig. 7 demonstrates that an increase in the Peclet number has opposite effects on
these two solutions. Reis’ solution predicts that increasing the Peclet number leads to
increased dispersion while this work shows a decrease in dispersion.

This peculiar behavior of Reis’ solution was predicted in his paper® and, in
fact, further calculations show that his solution actually goes through a2 minimum in
dispersion for 0 < Pe, <106 when L = 10. No explanation for this behavior is
offered in his paper and none is given here (Fig. 8).

Figs. 9 and 10 are a comparison of Reis’ solution, the solution from this paper
and the analytical solution in the limit of zero diffusion for Pe = 20, 100 and L = 100.
The last two solutions show very good agreement in the position of their peaks and
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AXIS PARALLEL TO THE ELECTRIC FIZLD
Fig. 6. A comparison of Reis’ solution with the solution derived in this paper at a Peclet number of
20 witih no electroosmotic flow. ——, Reis” solution; — -, this work. UfVy = 0.6; L/d = 10.0;
Peg = 20.0; Ve/Vu = 0.0.

in their respective trailing dispersions. The third solution is displaced from the first
‘two by nearly 50 and otherwise has no resemblence to the analytical result.

It is apparent from the graphical work presented here that Reis’ solution
differs substantially from the solutions presented in this paper. Reis’ solution does
not reduce to the analytic solution in the limit as (Pegd/L)* — oo as do the other
solutions. There are two importart points which suggest a reasoa why this happens.

In the first place, the elution peak arrives at a position on the z axis associated
with the average fluid velocity rather than the maximum fiuid velocity. In the limit as
(Pegd/L)? is large the latter would be true while for sinall (Pe,d/L)* the former would
be expected.

Secondly, Reis et al. assert that the parameter

a=<{CV>[<CH<¥>=C[C . (0)
has a vaiue that is never very different from 1.0. This would be expected at low values

of (Pe,d/L)* since the solute would manage to frequently sample all pesitions on the
y axis, but as may be seen from the zero diffusion results
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FLUX IN THE PLANE OF COLLECTION

AXIS PARALLEL TO TEE ELECTRIC FIELD

Fig. 7. A comparison of Reis’ solution with the solution derived in this paper when the Peclet number
is 100 2nd there is no electroosmotic flow. ——, Reis® solution; — — —, this work. UV, = 0.6; L/d =
10.0; Pey == 100.0; V&/V3 = 0.0.
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Fig. 8. The effect of the Peclet number on the dispersion of the solute using Reis” solution. U/Vy =
0.6; L{d = 10.0; Ve/Vy = 00.
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AXIS PARAY T E?, TO TEE ELECTRIC F1=L.D
Fig. 9. A comperison of Reis’ solution with the solutions derived in this paper when the non-
dim':tsioml column Ilengib is 100 and the Pecict number is 20, —*—, Analytical solution; ———,
Rei¢” solution; ——, this work. Uf¥Vy = 0.6; L/d = 100.0; Pe; = 20.0; Ve/Vy = 0.0,
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Fig. 10. A comparison of Reis’ solution with the sclutions derived in this paper when the non-
dimensional column length is 100 aad the Peclet number is 160. —*—, Analytical soluticn; —~—-—,
Reis® sofution; —, this work. UV, = 0.6; Lfd = 100; Pe, = 100.0; Ve/ Vi = 0.0.
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¢
= (E3))

-at the peak of the elution curve. The maximum value of ¢ is 1.5 when y is small. These
two points together suggest that the solution of Reis ef al. is only valid at low values
of (Pe,d/E)*.

s H % mbar tha dicrarci £
Fig. 11 shows the effect of increasing the Peclet number on the dispersion of

the concentration profile. From this figure it is apparent that there is no minimum in
the dispersior of the solute with increasing Peclet number. Also, a very slight shift
is noticeable in the position of concentration peak.
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FLUX IN THE PLANE OF COLLECTION

AXIS PARALYEY. TO THE ELECTRIC FIELD

Fig. 11. The effect of the Peclet number.on dispession in the approximate solution derived in this
paper. UV = 0.6; L{d = 10.0; Ve/Vy = 0.0. -

The profiles shown in Fig. 12 include the effect of an osmotic wall velocity.
They clearly show the beneficial effects of operating the CFE such that U = — V5.
Finally, Fig. 9 is 2 graph of the crescents formed by the profiles in Fig. 13. It is the
crescent formation phenomens which contribute the majority of the dispersion to the
solute concentration profile. Notice that when 7 = — ¥ the crescent shape is not
formed but diffusive influences cause the solute 1o assume an hourglass configuration.

CONCLUSIONS

The results of the Iatter part of this paper must be interpreted carefully and
only in the light of the assumptions used in the solution of the problem. The heuristic
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Fig. 12. The effect of electroosmotic velocity on dispersion using the approximate sclution derived
in this paper. L/d = 10.0; Pgy, = 100.0; UfV = 0.6.
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Fig. 13. The effect of the eleciroosmotic velocity on the formation of crescent when the effect of
diffusion is included. Notice that the crescent in the center, Vo/Vie =— UV, bas an bourglass
shape rather than a typical crescent shape. UV, = 0.6; Pes — 109.0; Lid = 10.6.

application of mathematic approximations for simplification’s sake can only be
justified, in this case, by the accuracy of these results when they are studied in their
asymptotic himit, (Peyd/L)* — co. From these results we are able then to extract some
useful information.
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_ Im the first place these equations predict a phenomenon as yet undetected in
operating devices. This is the formation of an hourglass configuration of solute in the
_chamber slit. Again it is important that the results here only slightly overestimate the
diffusive effect and so this phenomenon is not just an artifact of the calculation.
Secondly, the results point out the shortcomings of the earlier work done by
Reis et al. While it may be that the error in their analysis is due simply to truncation
of their analysis, the solution presented in their paper is clearly inapplicable to CFE
operation at high values of (Pe,d/L)*. In this limit the approximate solution presented
here agrees very well with the analytical solutions presented in the first part of the
paper. These solutions adequately describe the synergetic effects of the parabolic fluid
and osmotic velocities on the dispersion of solute in the CFE chamber.
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